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Abstract
A Jacobi matrix with matrix entries is a self-adjoint block tridiagonal matrix
with invertible blocks on the off-diagonals. Averaging over boundary condi-
tions leads to explicit formulae for the averaged spectral measure which can
potentially be useful for spectral analysis. Furthermore, another variant of
spectral averaging over coupling constants for these operators is presented.

PACS numbers: 02.30.Hq, 02.30.Fn

1. Introduction

Many variants of spectral averaging for one-dimensional Sturm–Liouville or Jacobi operators
are known [CL]. If such operators depend on some continuous parameters, then the spectral
averaging principle states that the spectral measures averaged over these parameters with
respect to a measure with density are themselves absolutely continuous. In refinements
useful for a detailed spectral analysis, it is possible to prove that they are even equivalent
to the Lebesgue measure [dRT, dRMS]. The continuous parameters are typically boundary
conditions or coupling constants.

In this work, we are focussing on generalizations of these spectral averaging results to
Jacobi matrices with matrix entries which are in the limit-point case. We expect them readily to
carry over to Hamiltonian systems [HS] and Dirac finite difference operators [CGR]. Standard
references on Jacobi matrices with matrix entries are [Ber, Sak], but we will follow closely the
notations of our recent works [SB1, SB2]. The only prior contribution to spectral averaging
for these operators seems to be due to Carmona and Lacroix [CL]. Unfortunately, their work
does not give all the details of proof and the presentation is not conceptually structured nor
does it cover full generality. Part of this work, in particular theorem 2, is thought to fill
these gaps. The main ingredient of the proof is the Cauchy formula for integration over the
unitary group as proven by Hua [Hua] (it is recalled in an appendix). Theorem 2 leads to a
formula (stated in theorem 3) establishing a close link between spectral properties of the Jacobi
operators in the limit point case and their formal solutions expressed in terms of the transfer
matrices. We believe that theorem 3 can potentially be a useful alternative tool (other than
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Kotani theory [KS]) for proving existence of absolutely continuous spectrum. Finally, theorem
4 provides a matrix version of a well-known identity of rank one perturbation theory, showing
that averaging of the spectral measure over both boundary conditions leads to the Lebesgue
measure. As an application, spectral stability results with respect to local perturbations are
presented. It is shown that also averages over fewer parameters than the whole set of boundary
conditions lead to averaged spectral measures which are equivalent to the Lebesgue measure,
at least locally in energy. This last part generalize the results in [dRMS]. As we lack a
subordinacy theory for Jacobi matrices with matrix entries the applications to spectral theory
of that paper do not carry over.

This work complements our prior works [SB1] on Sturm–Liouville oscillation theory and
[SB2] on Weyl theory for Jacobi matrices with matrix entries. Heavy use is being made of
the matrix Möbius transformation on which there is an abundant literature (see references
therein), but the main facts relevant for the present purposes are resembled in an appendix and
all their short proofs are given in [SB1, SB2].

2. Setup and review of needed results

Notations. The matrix entries of the Jacobi matrices are of size L ∈ N. Matrices of size L×L

are denoted by roman letters, those of size 2L×2L by calligraphic ones. The upper half-plane
UL is the set of complex L × L matrices satisfying ı(Z∗ − Z) > 0. Its closure UL is given
by matrices satisfying ı(Z∗ − Z) � 0. The boundary is a stratified space ∂UL = ∪L

l=1∂lUL,
where ∂lUL contains those matrices in UL for which the kernel of Z∗ − Z is l-dimensional.

2.1. The Jacobi matrix and its resolvent

Fix two integers L,N ∈ N and let (Tn)n=2,...,N and (Vn)n=1,...,N be sequences of respectively
invertible and self-adjoint L × L matrices with complex entries. Furthermore let the left and
right boundary conditions Ẑ and Z be also self-adjoint L × L matrices. Then the associated
Jacobi matrix with matrix entries HN

Ẑ,Z
is by definition the self-adjoint operator acting on

states φ = (φn)n=1,...,N ∈ �2(1, . . . , N) ⊗ C
L by(

HN

Ẑ,Z
φ
)
n

= Tn+1φn+1 + Vnφn + T ∗
n φn−1, n = 1, . . . , N, (1)

where T1 = TN+1 = 1, together with the boundary conditions

φ0 = Ẑφ1, φN+1 = −ZφN. (2)

If Ẑ = 0 and Z = 0, one speaks of Dirichlet boundary conditions at the left and right
boundaries respectively. It will be useful to allow also non-selfadjoint boundary conditions
Ẑ, Z ∈ UL hence giving rise to a possibly non-selfadjoint operator HN

Ẑ,Z
. One can rewrite

HN

Ẑ,Z
as an NL × NL matrix with L × L block entries:

HN

Ẑ,Z
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1 − Ẑ T2

T ∗
2 V2 T3

T ∗
3 V3

. . .

. . .
. . .

. . .

. . . VN−1 TN

T ∗
N VN − Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)
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At times, our interest will only be in the dependence of the right boundary condition Z, and
then the index Ẑ will be suppressed.

As for a one-dimensional Jacobi matrix, it is useful to rewrite the eigenvalue equation(
HN

Ẑ,Z
φ
)
n

= zφn, n = 1, . . . , N, (4)

for a complex energy z ∈ C in terms of the 2L × 2L transfer matrices T z
n defined by

T z
n =

(
(z1 − Vn)T

−1
n −T ∗

n

T −1
n 0

)
, n = 1, . . . , N, (5)

namely (
Tn+1φn+1

φn

)
= T z

n

(
Tnφn

φn−1

)
, n = 1, . . . , N. (6)

This gives a solution of the eigenvalue equation (4) which, however, does not necessarily
satisfy the boundary condition (2). Now z ∈ C is an eigenvalue of HN

Ẑ,Z
if and only if there is

a solution of (4), that is produced by (6), which satisfies (2). As is well established, one can
understand (2) as requirement on the solution at sites 0, 1 and N,N + 1 respectively to lie in
L-dimensional planes in C

2L. The corresponding two planes are described by the two 2L × L

matrices (one thinks of the L columns as spanning the plane)

�̂Ẑ =
(

1

−Ẑ

)
, �Z =

(
−Z

1

)
. (7)

Then the boundary conditions (2) can be rewritten as(
T1φ1

φ0

)
∈ �̂ẐC

L,

(
TN+1φN+1

φN

)
∈ �ZC

L. (8)

One way to attack the eigenvalue problem is to consider the L-dimensional plane �̂Ẑ as the
initial condition for an evolution of L-dimensional planes under the application of the transfer
matrices:

�z
n = T z

n �z
n−1, �z

0 = �̂Ẑ. (9)

Because the transfer matrices are invertible, this produces an L-dimensional set of solutions
of (6). With the correspondence

�z
n =

(
Tn+1φ

z
n+1

φz
n

)
, (10)

this also gives a matricial solution φz
n of (4). Due to the initial condition in (9) the left boundary

condition at sites 0, 1 is automatically satisfied. The dimension of the intersection of the plane
�z

N with the plane �Z gives the number of linearly independent solutions of (4) at energy z,
and therefore the multiplicity of z as eigenvalue of HN

Ẑ,Z
.

Given (9), but also its own sake, it is natural to introduce the transfer matrices over several
sites by

T z(n,m) = T z
n · . . . · T z

m+1, n > m, (11)

as well as T z(n, n) = 1 and T z(n,m) = T z(m, n)−1 for n < m. With this notation,
the solution of the eigenvalue equation (4) satisfies �z

n = T z(n,m)�z
m and, in particular,

3
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�z
n = T z(n, 0)�̂Ẑ . Of particular importance will be the transfer matrix T z(N, 0) across the

whole sample. Let us introduce the notations

T z(N, 0) =
(

Az
N Bz

N

Cz
N Dz

N

)
, (12)

where all entries are L × L matrices. These matrices will intervene in many of the results
below. Let us point out that T z(N, 0) and all its entries do not depend on the boundary
conditions Ẑ and Z. The transfer matrix including boundary conditions is then(

1 Z

0 1

)
T z(N, 0)

(
1 0

−Ẑ 1

)
=

(
Az

N + ZCz
N − Bz

NẐ − ZDz
NẐ Bz

N + ZDz
N

Cz
N − Dz

NẐ Dz
N

)
. (13)

Now we introduce the resolvent. Let πn : C
L → C

NL for n = 1, . . . , N denote the partial
isometry

πn|l〉 = |n, l〉, l = 1, . . . , L,

where the Dirac notation for localized states in C
N ⊗ C

L is used. Then the L × L Green’s
matrix is given by

Gz
N(Ẑ, Z, n,m) = π∗

n

(
HN

Ẑ,Z
− z1

)−1
πm.

Proposition 1. ([SB2]). For Ẑ, Z ∈ UL,

Gz
N(Ẑ, Z, 1, 1) = [

Az
N + ZCz

N − Bz
NẐ − ZDz

NẐ
]−1[

Bz
N + ZDz

N

]
= [[

Az
N + ZCz

N − Bz
NẐ − ZDz

NẐ
]−1[

Bz
N + ZDz

N

]]∗
.

2.2. Parametrization of the boundary conditions

The underlying Hermitian symplectic structure is an important ingredient in most of the
equations of the last sections, in particular in their proofs. It is necessary in order to understand
what the adequate spectral averaging over the boundary conditions is. This section first recalls
basic fact about the symplectic structure, which will then be applied below. Let the symplectic
form J be the 2L × 2L matrix defined by

J =
(

0 −1

1 0

)
.

An L-dimensional plane described by a 2L×L matrix � of maximal rank is called Lagrangian
(or also isotropic, or simply symplectic) if �∗J� = 0.

Two L-dimensional planes described by 2L × L matrices � and � are called equivalent
if there exists c ∈ Gl (L, C) with � = �c. The Lagrangian Grassmannian LL is by definition
the set of equivalence classes of Lagrangian planes. It is difficult to track back the original
reference for the following result (it probably predates [Bot]). A short proof can be found in
[SB1] where it is also shown how two natural symmetries are implemented.

Proposition 2. The Lagrangian Grassmannian LL is identified with the unitary group U(L)

via the real analytic diffeomorphism � : LL → U(L) given by

�([�]∼) = (a − ıb)(a + ıb)−1, � =
(

a

b

)
.

4
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Due to this theorem there is a natural measure on the Lagrangian Grassmannian L
C

L given
by the pull-back under � of the Haar measure on the unitary group.

The Lie group conserving the (Hermitian) symplectic structure is the (Hermitian)
symplectic group SP (2L, C) defined by those 2L × 2L matrices T satisfying T ∗J T = J .
Clearly, if � describes a Lagrangian plane, then so does T � for any T ∈ SP (2L, C).
Isomorphic to the Hermitian symplectic group is the Lorentz group of signature (L,L) defined
by U(L,L, C) = C SP (2L, C)C∗, where C is the Cayley transformation introduced as the
matrix

C = 1√
2

(
1 −ı1

1 ı1

)
.

Next let us exhibit explicitly the symplectic structure in the equations of section 2.1. Both
of the planes �̂Ẑ and �Z used as boundary conditions in (8) are Lagrangian in the above sense.
Actually there are many Lagrangian planes which cannot be written in this way, but they form
a set of zero measure. Due to proposition 2, it is natural to identify the left and right boundary
conditions with unitary matrices:

Û = �([�̂Ẑ]∼), U = �([�Z]∼). (14)

In other terms, this means U = C · (−Z) and Û = −C · Ẑ. Furthermore, let us set

UE
n = �([�E

n ]∼),

where �E
n is the solution (9) which automatically satisfies the left boundary condition. Then

UE
0 = Û . Using the correspondence (14), we also set

Gz
N(Û, U) = Gz

N(Ẑ, Z, 1, 1) .

As z 
→ Gz
N(Û, U) ∈ UL is analytic in z for Imm(z) > 0, the Herglotz representation

theorem [GT] associates a matrix-valued (averaged spectral) measure:

Gz
N(Û, U) =

∫
ρN

Û,U
(dE)

1

E − z
.

2.3. The oscillation theorem

The oscillation theorem is another application of the parametrization of boundary conditions.
It is stated for the sake of completeness and because it will be used in the proof of the result of
section 4. Due to section 2.2, E ∈ R 
→ �E

N is a path of Lagrangian planes and for each E the
dimension of its intersection with the right boundary condition �Z is the multiplicity of E as an
eigenvalue of HN

Ẑ,Z
. This intersection number was introduced by Bott [Bot] precisely for the

study of the eigenvalue calculation of Sturm–Liouville operators, the continuous analogues
of Jacobi matrices. Later on it was rediscovered by Maslov and a detailed survey of its
properties is included in [SB1]. The intersection number can be conveniently calculated using
the associated unitary UE

N and this leads to the following theorem which was proven in [SB1]
under the supplementary hypothesis that Tn’s are positive, but the proof directly transposes to
the slightly generalized situation considered here.

Theorem 1. Let E ∈ R, N � 2, and (for the sake of simplicity) the right boundary condition
be Dirichlet, that is Z = 0. Then there are L strictly increasing real analytic functions
θE
N,l : R → R, l = 1, . . . , L, such that eıθE

N,l are the eigenvalues of UE
N . The multiplicity

of E as an eigenvalue of HN

Ẑ,0
is equal to the multiplicity of −1 as an eigenvalue of UE

N .

Furthermore, the matrix 1
ı

(
UE

N

)∗
∂EUE

N is positive definite.

5
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2.4. Limit point operators

If in the prior sections N = ∞, then the right boundary condition Z is pushed to infinity. If this
gives a well-defined (essentially self-adjoint) operator HẐ , one speaks of the limit point case.
Various criteria for this can be given, the simplest one being that ‖Tn‖ is uniformly bounded
from below. Otherwise one needs the infinite operator having non-vanishing deficiency spaces
and one has to consider various self-adjoint extensions. Here we restrict ourselves to limit
point operators. For these operators, limits

Gz(Û) = lim
N→∞

Gz
N(Û, U)

exist, are independent of U and are the Green function of HẐ . Its spectral measure is denoted
by ρÛ and obtained as the weak limit of ρN

Û,U
.

3. Average over boundary conditions

Let us write dU for the normalized Haar measure on U(L).

Theorem 2. For Imm(z) > 0, one has∫
dUGz

N(1, U) = [
Az

N + ıCz
N

]−1[
Bz

N + ıDz
N

]
(15)

= [(
Bz

N

)∗
+ ı

(
Dz

N

)∗][(
Az

N

)∗
+ ı

(
Cz

N

)∗]−1
. (16)

Moreover, for E = Ree(z), and setting Imm(A) = 1
2ı

(A − A∗) for any square matrix A,

lim
Imm(z)↓0

∫
dU Imm

(
Gz

N(1, U)
) = [(

AE
N

)∗
AE

N +
(
CE

N

)∗
CE

N

]−1
. (17)

Remark 1. A formula similar to (17) can be found in [CL], but the latter authors use the
average over the Haar measure on the symmetric space of symmetric unitaries instead of the
group U(L) (moreover, their proof seems to have several gaps).

Remark 2. It is easy to incorporate the left boundary condition Û �= 1 using (13).

Remark 3. One way to define the closed Weyl disc W
z
N is as the image of the map

Z ∈ UL 
→ Gz
N(1, Z, 1, 1). As proven in [SB2] the points in the Weyl disc can also be

parametrized by Gz
N(1, Z, 1, 1) = Sz

N +
(
Rz

N

) 1
2 W

(
Rz

N

) 1
2 , where Sz

N and Rz
N > 0 are properly

defined center and radial operators, and W ∈ U(L) depends on Z, cf [SB2]. Taking the
average over W with respect to to the Haar measure in this representation immediately gives∫

dWGz
N(1, Z, 1, 1) = Sz

N , which is not equal to the rhs of (15). The Jacobian of the change
of variables Z 
→ W does not seem to be known (nor be of great importance).

Proof of theorem 2. First let us note that one can use the Möbius transformation to express
U = �([�Z]∼) = C · (−Z). Hence also Z = −C∗ · U . Starting from proposition 1, one
therefore has ∫

dUGz
N(1, U) =

∫
dU

(
Az

N − C∗ · UCz
N

)−1(
Bz

N − C∗ · UDz
N

)
.

By (B.2), ∫
dUGz

N(1, U) =
∫

dU
(
Az

N + C∗ · UCz
N

)−1(
Bz

N + C∗ · UDz
N

)
.

6
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(Alternatively to this argument, one could have defined the average on the lhs by the rhs.) In
order to be able to apply the Cauchy formula (B.1) for Z = 0, it is sufficient to show the
analyticity of the function

f (Z) = (
Az

N + C∗ · ZCz
N

)−1(
Bz

N + C∗ · ZDz
N

)
,

on the unit disc D
C

L as well as its continuity on the closure D
C

L (strictly speaking, one should
consider the entries of the matrix-valued function f ). This follows from Weyl theory [SB2]

combined with the fact that (−C∗ · Z) is in the closed lower half plane (for Z ∈ D
C

L). The
Cauchy formula (B.1) for Z = 0 now concludes the proof of (15) because C∗ ·0 = ı1. Formula
(16) is proven similarly from the second identity in proposition 1.

It follows from the results of [SB2] that Az
N + ıCz

N = (
Az

N(Cz
N)−1 + ı1

)
Cz

N is invertible.
Inserting 1 = [

(
Az

N + ıCz
N

)∗
]−1

(
Az

N + ıCz
N

)∗
in (15) shows∫

dUGz
N(1, U) = [(

Az
N

)∗
Az

N +
(
Cz

N

)∗
Cz

N + ı
((

Az
N

)∗
Cz

N − (
Cz

N

)∗
Az

N

)]−1

[(
Az

N

)∗
Bz

N +
(
Cz

N

)∗
Dz

N + ı
((

Az
N

)∗
Dz

N − (
Cz

N

)∗
Bz

N

)]
.

As the transfer matrices at real energies are symplectic, the limit of vanishing imaginary part
in the energy can be taken in this equation and that directly implies

lim
Imm(z)↓0

∫
dUGz

N(1, U) = [(
AE

N

)∗
AE

N +
(
CE

N

)∗
CE

N

]−1

[(
AE

N

)∗
BE

N +
(
CE

N

)∗
DE

N + ı1
]
,

where we used the identity
(
AE

N

)∗
DE

N +
(
CE

N

)∗
BE

N = 1 holding for any symplectic matrix. The
same calculation can be carried out starting from (16) and adding the results up gives (17).

�

One corollary of theorem 2 is the following formula which links the averaged spectral
measure defined by

ρN

Û
=

∫
dUρN

Û,U
(18)

to properties of the eigenfunctions of the transfer matrices at real energies.

Corollary 1. For any E0 < E1,

1

2

[
ρN

Û
([E0, E1]) + ρN

Û
((E0, E1))

]
=

∫ E1

E0

dE
[|AE

N − BE
NC∗ · (−Û )|2 + |CE

N − DE
NC∗ · (−Û )|2]−1

.

In the limit point case, the averaging in (18) becomes irrelevant because ρN

Û,U
converges

weakly to the spectral measure ρÛ of HẐ as N → ∞. This leads to the following formula for
the spectral measure, which was already obtained by Carmona in the strictly one-dimensional
case L = 1, and by Pearson [Pea] for one-dimensional Schrödinger operators. For the sake of
simplicity, let us set Û = 1 so that C∗ · (−Û ) = 0.

Theorem 3. Let the semi-infinite Jacobi matrix H be in the limit point case. Then, for any
E0 < E1,

1

2

[
ρ1([E0, E1])+ρ1((E0, E1))

] = lim
N→∞

∫ E1

E0

dE
[(

AE
N

)∗
AE

N+
(
CE

N

)∗
CE

N

]−1
. (19)

7
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In the case where H is not in the limit point case, but has equal deficiency indices n+ = n−,
the von Neumann theory provides us with a family of self-adjoint extensions indexed by the
unitary group of dimension n+ = n−. Averaging the spectral measures over this unitary group
(with an adequate density which can be deduced from theorem 6 of [SB2]) gives an averaged
spectral measure which is given by the rhs of (19).

Next we also average over the left boundary condition Û . The associated averaged spectral
measure is equal to the Lebesgue measure, a fact also known from the case L = 1.

Theorem 4. For any N and HN ,

4
∫

dÛ (Û − 1)−1ρN

Û
(dE)(Û ∗ − 1)−1 = 1 dE. (20)

The proof of the theorem is based on the following integral identity.

Lemma 1. Let 0 < T ∈ U(L,L) and V ∈ U(L). Then∫
dU

[(
U

V

)∗
T

(
U

V

)]−1

= 1.

Proof. Let I denote the integral appearing in the lemma. First let us use that 0 < T ∈ U(L,L)

can be transformed into a normal form by M = ( W 0

0 W ′
) ∈ U(L,L) ∩ U(2L) ∼=

U(L) ⊕ U(L) where W,W ′ ∈ U(L), namely

M∗T M =
(

cosh(η) sinh(η)

sinh(η) cosh(η)

)
,

where η = diag(η1, . . . , ηL) is a diagonal matrix with non-negative entries. Let us denote the
rhs by Tη. Replacing this identity, one obtains

I = (W ′V )∗
∫

dU

[(
WU(W ′V )∗

1

)∗
Tη

(
WU(W ′V )∗

1

)]−1

(W ′V ) ,

so that using the invariance of the Haar measure dU one realizes that it is sufficient to consider
the case V = 1 and T = Tη. First suppose η > 0. In this case, sinh(η) is invertible and

I =
∫

dU
[

cosh(η)U + U cosh(η) + U sinh(η)U + sinh η
]−1

U

=
∫

dU

[(
U +

cosh(η) + 1
sinh(η)

)−1(
sinh(η)

)−1
(

U +
cosh(η) − 1

sinh(η)

)−1

U

]
.

To simplify notations, define α = cosh(η)+1
sinh(η)

and β = cosh(η)−1
sinh(η)

. Note that 0 < β < 1 < α, αβ =
1 and (α − β) sinh(η) = 2. Now using∫

dU(U + β)−1U =
∫

dU
∑
n�0

( − U−1β
)n = 1,

∫
dU(U + α)−1U = 0,

one gets with the resolvent identity

I − 1 = 2
∫

dU
[(

(U + α)−1 − (α − β)−1
)

sinh(η)−1(U + β)−1U
]

= −
∫

dU(U + α)−1U = 0 ,

8
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and the proof is complete in the case η > 0. By continuity of the integral one also recovers
the case η � 0.

�

Proof of theorem 4. This is based on corollary 1. Actually it is sufficient to show that the
average of the integrand on the rhs of corollary 1 satisfies

4
∫

dÛ (Û − 1)−1
[|AE

N − BE
NC∗ · (−Û )|2 + |CE

N − DE
NC∗ · (−Û )|2]−1

(Û ∗ − 1)−1 = 1.

(Note that the various inverse appearing in this formula do not exist on a set of zero measure.)
This identity reduces to

2
∫

dÛ

[(
U

1

)∗
CT E(N, 0)∗T E(N, 0)C∗

(
U

1

)]−1

= 1.

Now T E(N, 0)∗T E(N, 0) is a positive symplectic matrix and hence CT E(N, 0)∗T E(N, 0)C∗

is a positive matrix in U(L,L). Hence lemma 1 shows that this identity indeed holds.
�

4. Spectral measures averaged over coupling constants

As an application of the results of theorem 3 we consider here a particular one-parameter
family of Jacobi matrices with matrix entries obtained by a local positive perturbation and
show that the associated averaged spectral measure is under certain conditions absolutely
continuous.

Let H be a Jacobi matrix with matrix entries in the limit point case, and let πn : C
L →

(CL)N denote the partial isometry onto the nth site. For real positive semi-definite matrices
(Wn)1�n�N and μ ∈ R define

H(μ) = H + μ

N∑
n=1

πnWnπ
∗
n .

Furthermore, let HN(μ) be the finite Jacobi matrix obtained by projecting H(μ) to the first
N sites. It is of the form (3) with Vn replaced by Vn + μWn and Ẑ = Z = 0. Because the
perturbation H(μ) − H is increasing in μ, the eigenvalues of H(μ) are increasing functions
of μ. Finally let ρ(μ) be the matrix-valued spectral measure of H(μ) and define the averaged
spectral measure corresponding to an interval I = [μ0, μ1] by

ρ =
∫

I

dμTr(ρ(μ)).

Theorem 5. Suppose that Wn > 0 and Wn+1 > 0 for some n = 1, . . . , N−1. Let I = [μ0, μ1]
be sufficiently large such that there are 2L eigenvalues of HN(μ) passing by E as μ varies in
I. Then ρ is equivalent to the Lebesgue measure in a neighborhood of E.

As can be seen from the proof below the hypothesis can be somewhat relaxed. For L = 1
the result was proven in [dRMS]. Similar as in [dRMS], the condition on the size of I can also
expressed in terms of an associated Birman–Schwinger operator and, furthermore, it is also
possible to consider several parameter spectral averaging instead of over just one parameter
μ. On the other hand, the applications to spectral analysis do not carry over immediately,
because the subordinacy theory is not yet developed for Jacobi matrices with matrix entries.

9



J. Phys. A: Math. Theor. 42 (2009) 185204 C Sadel and H Schulz-Baldes

First we need to fix some notations. Just as H(μ), all objects of the previous sections
depend on a supplementary parameter μ. In particular, we will write T z

n (μ) and T z(n,m,μ).
Furthermore, let us introduce the Dirichlet solutions �

D,z
N (μ) = T z(N, 0, μ)

( 1
0

)
and the matrix

P E
N (μ) = −�

D,E
N (μ)∗J ∂μ�

D,E
N (μ).

The proof of theorem 5 will be based on the following criterion.

Lemma 2. Suppose (i) There exist positive constants C1, C2 such that C11 � P E
N (μ) � C21

for all μ ∈ I . (ii)∫
I

dμ

2π
Imm∂μ log

(
�(�

D,E
N (μ))

)
< −L.

Then ρ is equivalent to the Lebesgue measure in a neighborhood of E.

Proof. We write ρ(E0, E1) for 1
2

[
ρ([E0, E1]) + ρ((E0, E1))

]
. Let us start by integrating (19)

over μ and using the dominated convergence theorem as well as Fubini’s theorem:

ρ(E0, E1) = lim
M→∞

∫ E1

E0

dE

∫
I

dμTr
(∣∣T E(M,N)�

D,E
N (μ)

∣∣−2)
.

Now for positive semi-definite operators A,B with 0 < C11 � B � C21,

1

C2
Tr(AB) � Tr(A) � 1

C1
Tr(AB).

Applying these bounds for B = P E
N (μ) shows that

ρ(E0, E1) ≈ lim
M→∞

∫ E1

E0

dE

∫
I

dμTr
(∣∣T E(M,N)�

D,E
N (μ)

∣∣−2
P E

N (μ)
)
,

where the sign ≈ means that we have two-sided bounds. As T E(M,N)∗J T E(M,N) =
J , �

D,E
M (μ) = T E(M,N)�

D,E
N (μ) and T E(M,N) does not depend on μ, this can be rewritten

as

ρ(E0, E1) ≈ − lim
M→∞

∫ E1

E0

dE

∫
I

dμTr
(∣∣�D,E

M (μ)
∣∣−2

�
D,E
M (μ)∗J ∂μ�

D,E
M (μ)

)

= −π lim
M→∞

∫ E1

E0

dE

∫
I

dμ

2π
Imm∂μ log

(
�(�

D,E
M (μ))

)
,

where the second identity is checked in [SB1][lemma 4]. Now the expression under the
integral

∫
dE on the rhs is precisely the pairing

∫
�

ω of the Arnold cocycle ω with the
path �(μ) = �

D,E
M (μ) = T E(M,N)�

D,E
N (μ), μ ∈ I , in the Lagrangian Grassmannian LL

(actually here this is a path in the real Lagrangian Grassmannian because H(μ) is real).
Hypothesis states something about the pairing with the path �′(μ) = �

D,E
N (μ), namely∫

�′ ω < −L. However, these two paths are related by the multiplication with the symplectic
matrix T E(M,N). Hence by [SB1], [proposition 4]∣∣∣∣

∫
�

ω −
∫

�′
ω

∣∣∣∣ � L.

Therefore 0 < C3 < −
∫

�

ω < C4 where the upper bound follows from compactness of I and

the constants are independent of M. Replacing this shows

ρ(E0, E1) ≈ lim
M→∞

∫ E1

E0

dE = E1 − E0,

10
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which is precisely the claimed equivalence of ρ with the Lebesgue measure.
�

Proof of theorem 5. First of all,

T E(N, 0, μ)∗J ∗∂μT E(N, 0, μ) =
N∑

n=1

T E(n − 1, 0, μ)∗T E
n (μ)∗J ∗(∂μT E

n (μ))

T E(n − 1, 0, μ).

But

T E
n (μ)∗J ∗∂μT E

n (μ) =
((

T −1
n

)∗
WnT

−1
n 0

0 0

)

is positive semi-definite, and the arguments in the proof of [SB1][proposition 6] show that((
T −1

n+1

)∗
Wn+1T

−1
n+1 0

0 0

)
+ T E

n+1(μ)∗
((

T −1
n

)∗
WnT

−1
n 0

0 0

)
T E

n+1(μ) > 0

(strict positivity), whenever Wn > 0 and Wn+1 > 0. In the latter case the above sum is
therefore strictly positive. Hence the hypothesis of theorem 5 implies P E

N (μ) � C1 > 0.
Compactness of I thus implies that hypothesis (i) of lemma 2 holds. Hypothesis (ii) follows
from the oscillation theorem as stated in theorem 1. In fact, as μ increases each phase
θE
N,l(μ) decreases. The integral in (ii) is the total phase (sum of all θE

N,l(μ)’s, in units of 2π )
accumulated as μ varies in I. If L + K eigenvalues pass by E as μ varies, the total phase has
to change by at least K. Hence the hypothesis of theorem 5 imply (ii) of lemma 2.

�
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Appendix A. Reminder on Möbius transformations

This appendix resembles the basic properties of the Möbius transformation as they are used
in the main text. All proofs are contained in [SB1]. Complex matrices of size 2L × 2L are
denoted by mathcal symbols, those of size L × L by roman letters.

The upper half-plane and unit disc (also called Cartan’s first classical domain) are defined
by

UL = {
Z ∈ Mat(L × L, C)

∣∣ı(Z∗ − Z) > 0
}
, DL = {

U ∈ Mat(L × L, C)
∣∣U ∗U < 1

}
,

where Y > 0 means that Y is positive definite. If Z ∈ UL, then Z is invertible and −Z−1 ∈ UL.
Moreover, for any V = V ∗ and any invertible T, one has Z + V ∈ UL and T ∗ZT ∈ UL. The
formulae

U = (Z − ı1)(Z + ı1)−1, Z = ı(1 + U)(1 − U)−1, (A.1)

establish an analytic diffeomorphism from UL onto DL. The boundary ∂DL of DL is a stratified
space given as the union of strata ∂lDL, l = 1, . . . , L, where ∂lDL is the set of matrices U
for which U∗U � 1 and rank (1 − U ∗U) = L − l. By proposition 2 the maximal boundary
∂LDL = U(L) is identified with the Lagrangian Grassmannian LL. Similarly, the boundary
of UL is stratified, but this will play no role here.

11
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The Möbius transformation (also called canonical transformation or fractional
transformation) is defined by

T · Z = (AZ + B)(CZ + D)−1,

T =
(

A B

C D

)
∈ GL(2L, C), Z ∈ Mat(L × L, C), (A.2)

whenever the appearing inverse exists. For T as in (A.2) and as long as the appearing inverse
exists, the inverse Möbius transformation is defined by

W : T = (WC − A)−1(B − WD), W ∈ Mat(L × L, C). (A.3)

The Möbius transformation is a left action, namely (T T ′) · Z = T · (T ′ · Z) as long as all
objects are well defined. It is well known that if T ∈ SP (2L, C) and Z ∈ UL, the Möbius
transformation T · Z is well defined.

Appendix B. Cauchy formula for Cartan’s classical domain

The results of this section are proven in [Hua]. Let DL be the topological closure of DL and
let dU be the normalized Haar measure on its maximal boundary ∂LDL = U(L).

Theorem 6. For any continuous function f : DL → C which is analytic on DL, one has for
all Z ∈ DL,

f (Z) =
∫

dU det(1 − ZU ∗)−Lf (U). (B.1)

For the proof of theorem 2 we only need the case Z = 0. Moreover, only intervene
functions f which are of the form f (U) = F(C∗ · U) where C∗ · U is the Cayley transform
of a unitary matrix (written in the notations of the appendix) and hence Hermitian, and F is a
complex function on the Hermitian matrices. The Cayley transform C∗ · U is not defined for
all unitaries U, but it is defined on a set of full measure. The change of variables formula to the
Lebesgue measure dξ on (real and imaginary parts of each entry of) the Hermitian matrices
is now ∫

dUF(C∗ · U) = c

∫
dξ det(1 + ξ ∗ξ)−LF (ξ),

where c is a normalization constant (which is given in [Hua]). As the measure dξ det(1+ξ ∗ξ)−L

is invariant under the reflection ξ 
→ −ξ , it follows that∫
dUF(C∗ · U) =

∫
dUF(−C∗ · U). (B.2)
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